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General Outline

* introduction and reminder of atomic bonds, crystals — week 1
Part I: crystallography - weeks 2-6

» packing of spheres, constructing crystal structure

« crystal lattice and symmetry operations

« mathematical description of the lattice, Miller indices
 reciprocal space

Part II: characterization — week 6-8

« diffraction

 scattering

BREAK 18.4. & 25.4.

Part III: amorphous & hierarchical structures — week 9-12
» glasses

* polymers

* biological and hybrid materials

Recap — week 13



General Outline (adapted)

introduction and reminder of atomic bonds, crystals — week 1

Part I: crystallography - weeks 2-6

packing of spheres, constructing crystal structure week 2
crystal lattice and symmetry operations week 3
mathematical description of the lattice, Miller indices week 4
reciprocal space (&diffraction) week 6

characterization I: diffraction week 7

diffraction & recap of crystallography week 8

BREAK 18.4. & 25.4.
Part III: amorphous & hierarchical structures — week 9-12

glasses

polymers
Characterization II: scattering

* biological and hybrid materials

Recap — week 13



Overview today

 Diffraction on planes of crystals

« Reciprocal lattice

 d-spacing of planes

* Young’s double slit experiment and Bragg’s law

« Laue’s condition: connection between diffraction and reciprocal lattice

« Diffraction as Fourier Transform of the crystal (=lattice & motif)

« Hammond Chapter 6-8

« Jens Als-Nielsen & Des McMorrow “Elements of Modern X-ray Physics”
Chapter 5
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https://lampz.tugraz.at/~hadley/ss1/skriptum/outline.php for some nice visualization and interactive
plots!

—mm— ot mm s gr— Tt mm et ey T - —- T T T—T———— T Ty = —— - —— -

* Crystal structure

o Crystal structure W

o Unitcell W

o Bravais lattices W

o Miller indices W

o Wigner Seitz cell W
s Drawing Wigner-Seitz cells in two dimensions
= Drawing Wigner-Seitz cells in three dimensions

o Asymmetric unit

o Symmetries
= Point groups W
= Space groups W
= Space Group — Bravais Lattice, Point Group

o Examples of crystal structures

—) & simple cubic, fcc, bee, hep, dhep, diamond, silicon, zincblende, ZnO wur:
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cPi-L
X-ray diffraction: crystal planes
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Diffraction pattern of Al (FCC crystal)
An X-ray diffraction pattern reflects the lattice and symmetry of the crystalline material.

The diffraction peaks are indexed, these indices tell you which crystal planes are reflecting
the X-rays
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Electron diffraction: crystal planes

beam falls in parallel to [110]
the [110] zone axis.

Images of same sample

with incident electron beam
parallel to other crystallographic
directions

[112]

Depending on how the sample is oriented
relative to the incoming beam, the diffraction
pattern will be different and allow to recognize
the symmetry of the crystal

[001]

Au alloy



Reciprocal lattice and diffraction

* the electron diffraction patterns or the X-ray diffraction patterns are simply
sections through the reciprocal lattice of a crystal—the pattern of spots on the
screen or area detector and the pattern of reciprocal lattice points in the
corresponding plane or section through the crystal are identical.

» which section of the 3D reciprocal lattice is probed is defined by the Ewald
sphere (as will be discussed in coming weeks)
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Reciprocal lattice vectors

direction normal to length inversely
plane proportional to lattice
planes .
2 7 spacing d
— _—T 1} normal to d;
//// planeS 1
il i s [|d,*|| = C/d,
= L / lanes 2
/1#\/' P * C=2n
"/ planes 1 9
« d, > 2
(a) (b) (0)
two families of planes with d- normals to the family of reciprocal (lattice) vectors
spacing d, and d, plailn.es from common
origin O longer vector for smaller

MSE-238 d-spacing 9
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Reciprocal lattice

planes 3

planes 2 i
d, >
» N normal to
planes 1
\jf “ 8
N b
- normal to
“ g planes 3
& planes 1 normal to
d1—’

planes 2

(a) (b)
scale in reciprocal space
1s 1/length

A1, or nm
third family of planes, the reciprocal vectors start to form a grid or lattice

MSE-238 10



The five plane lattices and their correspondinEPFL

reciprocal lattice

unit cell‘specified by reciprocal lattice vectors a* and b*
MSE-238 11
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Reciprocal lattice

L ) Note that a* and ¢* are not parallel to a and ¢,
Plan of a monoclinic P unit cell respectively, because the normals to the

perpendicular to the y-axis planes (hok) (100) and (001) planes in the monoclinic lattice are
not parallel to a and ¢, respectively.

102 002

a* = dTOO and ||a*[| = 21t/d,00
C* — ng] and ||C*|| = 2:’-[/dom

MSE-238 12
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Reciprocal lattice

for the (102) planes:

for the (hkl) planes:

plane indices are components of the

100 d*hkl vector
The reciprocal lattice unit cell of a

monoclinic P crystal defined by

: : A N direct lattice vector: directions are its
reciprocal lattice vectors a*, b* and ¢

components

I, = ua+ vb + we

MSE-238 13



cPrL
Reciprocal lattice

c* is perpendicular to both a and b, which means their dot
products are zero

c*~a=0andc**-b=0

c* e c=cc*cosg

with ||e*|| = 2m/dyy; and from drawing: ¢ cos ¢ =d,,,

c* ¢ =2ndyg; /dpg; = 2T

does we have:

—

a at. @ =2n b*. @ =0 . @ =0
Plan of a monoclinic unit cell @r. b =1 b*. b =2n c*. b =0
perpendicular to the y-axis a. T =0 b T =0 . T =9

We have a new basis new basis (O, a*, b*, ¢*) in which a vector N*,;53 = ha* + kb* + lc*
is perpendicular to the plane (hkl)

If we consider any vector in the direct space R = r,a + r,b + r,c and one in the
reciprocal space N* = n,a* + n,b* + n,c* we have:
R-N"=rmnja-a* +nrn,b-b* +rynzc-c* =2n(rny +rn, +ryns)

MSE-238 an integer "



Reciprocal lattice — Notations...

A note on Notations:

the reciprocal space vector (which points from one reciprocal lattice point to
some other reciprocal lattice point) is called

« d¥y

e N*

or in particular when we talk about diffraction often
- GorK

also
a**a=b**b=c*+c =C,Caconstant

Often C is often noted as 27 (and we will see soon why it is very convenient to do
so) in some text books (including Hammond) C=1



Find the reciprocal space vectors from direct ePrl
lattice vectors

find a* which is orthogonaltoband ¢ - cross product!
and fullfills a - a* = 2

with a* = (b X ¢) 27ﬂ

277
aa*=a- (bxc)7=29t
Reminder Volume:

V=@, b,¢)=a .(b x¢ )=b .(¢xa )=¢.(axbh)

so we can find the reciprocal space vectors by:

- 2
L v v

16



For cubic structure

primitive cubic:

V=as3 a=ax b=ay c=az
a* =2% (b x c)
%
o (© 0\ on ° 2M 27 27T
L _=t <ty == =2
a*=—3|a|X 0—a3<0>—ax—a2a and b*——ay
0 a 0
c*¥== % Z
—> another cubic
- a*,b*,c* are parallel to a,b,c
face-centred cubic reciprocal lattice reciprocal lattice of the face-
(cubic F) for the body-centred cubic centred cubic lattice is

(direct) lattic (cubic I) body-centred
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Example

HM:F m -3 m #2325
a=5.5394
b=5.5394
e=5.5394
x=20. 506"

p=%0.000°
y=50.000°

MSE-238 18
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Distances between (hkl) planes

The reciprocal space formalism facilitates the derivation of the interplane distance of

parallel (hkl) planes. 1 1 1
0OA=-a OB=-b 0C=-c
h k l
distance d ) is the projection of OA (or OB or OC) onto the
normal of the plane - the scalar product

4’N

4

v N*=ha* + kb* + Ilc* : - FARE
now we have the reciprocal lattice vector N* 34 which is

perpendicular to the (hkl) plane

Anki does we can now calculate the distance by projection of OA onto

the unit vector along N* y

N zhkl)
” N thl) ”

as we have seen before, for any vector (e.g. OA) in real space it holds

g _ 2T
D N e |

d(hkl) = 0A-

» Calculate the reciprocal lattice vectors a*, b*, ¢* and the vector N,

19
 Find the norm of N, -= find the distance.



Distance between (hkl) planes: cubic system

2T

Ay =

Ninio ||

|IN* il | =/ (ha* + kb*+ le#) « (hax+ kbx+ lc#)

for crystals with orthogonal axis, for example cubic
also reciprocal basis is orthogonal a* + b* =0 etc.

| IN* e | = ha*+ ha*+ kb* * kb*+ lc+ * lc¥)

. 27T 27 * — =
as we have seen before for cubic a* = T X b* = =Y c=77Z

orthonormal basis = norm of vector as square root of components

N = () () (220)” = 2n T dp = s

a




cPrL
Reminder distance in direct lattice
» The plane parallel to the plane (ABC) and passing through the

/ C origin O is a crystal plane belonging to the family of planes
{hkl}.
= Assuming that the distance between two (hkl) planes is the same
C(0,0, 1) for all consecutive planes, this distance is given by ON, which is
lo N8Ok | b the projection of the vector OA on the normal to the plane

a A (1/h, 0, 0)

ON = dgpy = OA Ty % a-b=abcosu

> —
< a -
1

/
OAcos « =ON or (a/h)cos a =dpy or cosa= (1) dnii.
a

k [
cos B = (b) dpgg and  cosy = () dhnil-
c

For orthogonal axes cos® @ + cos”® B + cos? y = 1 (Pythagoras’ theorem).

1

dhkl

2

h\? i\’ 1\
) Z) 47, (—) d,, = 1.
(a) hkz+(b) hkl T+ o) ki

For a cubic crystala = b = c, 1 24+ k2 42 a
5 = 3 . d(hkl) = 5 1
3, a Vh2 +k2 +1

X

- for cubic both works, for non-orthogonal lattice it is much easier in the reciprocal space 21



Distance between (hkl) planes

2T
N Ehien |

Ay =

|IN* il | =/ (ha* + kb*+ le#) « (hax+ kbx+ lc#)

watch out, a*, b* and ¢* are not orthogonal to each other for many of the
crystal lattices!

but the reciprocal space lattice helps to get back some orthogonality since we
defined a* to be orthogonal to a and b etc.

- exercise to calculate for hexagonal lattice



Distances betweek (hkl) planes

— Monoclinic:

— Orthorhombic:

—Tetragonal:

— Hexagonal:

— Cubic:

1
=T P om0 1 K
8_“_2 ac COSbgsm bt b?
~ 1
dhkl - h2 k2 IZ
aZtpit¢?
_ 1
dth - h2 + k2 |2
T ad t¢?
1
Oy ?
352 (" + K>+ hk) + 2
a
g = ;




Young’s double slit experiment
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to get such an interference pattern we need a wavelength that is of the order of the
distance between the slits.

by Phil Willmott




by Phil Willmott

OPD/d = sin 260

Constructive interference: OPD = m\

If % < 1,60 issmall
» =sin260 ~ 2sinf

= MmA = 2dsinf



cPrL
Young’s double slit experiment

1 1)
1
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1 41T
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m\ = 2dsin@ distance between two scattering centers or slits increases
by Phil Willmott the angle between maxima become narrower



cPrL
Crystal instead of double slit

by Phil Willmott



Which radiation?

visible light will not be a good probe since the wavelength is 400nm-700nm,
which is much bigger than the distance between the atoms, typically of the
order of a few 10~1%m. For instance,

- the lattice parameter of the element Niis 3.6 1071%m,

- the size of an atom is about 1.4 1071%m.

Energy wavelength

Neutrons 1 — 5 meV (cold) 9-4 A
25 — 50 meV (thermal) [1.8-1.3A

Xrays 100keV 0.12 A ( hard Xrays)
40 keV 0.31A
5 keV 2.48 A (soft Xrays)
Electrons 200 keV 0.025 A

MSE-238
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cPrL
Bragg’s law

Again, mA = 2dsint or A = 2dpp; sin 6

by Phil Willmott
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Bragg’s law

© 0606060 0 0O

by Phil Willmott



cPrL
Bragg’s law

higher orders m (or n):

—

~g § o
;af
Ty
\,"’ ;: ..‘.

mA = 2d sin 6 A = 2dpisin€  what happened to m?

it usually is incorporated into (hkl)

mA = 2dp,; sin 0 for example third order reflection of the
d . . i :
A=2 (%) Sin@ = 2d,, 1 sin 0 g}illllz (1;1131113 ;s( gggl)*esented as a first order

MSE-238 31
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Bragg’s law

AL=d2_d1=O

d, = dcos(0)
d, = dcos(8)

\9

VAR VA
(N

@

only atoms on different planes can scatter out of phase! So we can
consider entire planes as scatterers.
geometrical view, simple expression

what if we look at a crystal as a three-dimensional lattice with atoms
located in a certain motif? We can look at the lattice as a 3D diffraction
grating - view of Max von Laue (1912)

MSE-238 32



Reminder complex numbers

Designation Formulae
Imaginary unit j j2=-1
Imaginary number 1 n =iy (y real)
Complex number Z in arithmetic form Z=Xx+jy (x,)y real)
X = real part
y = imaginary part
Complex conjugate Z¥=Xx—jy

Complex numbers in polar form

Transformation (x,y) < (r,a)

z =r(cosa+jsina)

x:rcosa} r=1fx2—|—y2}

Y =rsin tan = y/x

Complex number in exponential form
Euler’s formula

z =rel
e = cosa +jsina

| G :
Exponential form for cosine cose = 2 (e +e1¥) = coshjua
and sine functions
1 . . 1
sine = — (e)* —e %) = —sinhju
2] ]
Z =rei®

Periodicity of complex numbers

= rel@+2km) (k= 41,42 43,...

=P

33
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Reminder complex numbers

Designation

Formulae

Multiplication and division
in exponential form

Raising to a power and extracting
roots in exponential form

z1 = ryei®l z, = ryei®

Zl 2'2 =r rzej[al+a2]

210 71 o -—ws)

Z2 r2
z = rel®
2N _ pNaina

Yz = Yrelll@2zk)/nl (g =0, +1,42,--.)

Multiplication and division
in polar form

Raising to a power and extracting
roots in polar form

z1=ry(cosay +jsinag)

Z5 =Fs(COS®y +jsina,)

z1Z3 =ryrafcos(ery +a2)+jsin(eg +oz)]
Z]
2
z=r(cosax+jsina)

z" = r[cosna +jsinna]

Bz = {’/F{cos (%—I——zzk) + j sin (%_I__Z:k)]
(k=0,+1,42,---)

= :—l[cos(txl —&2) +] Siﬂ(ﬂl s '952)]
2

34
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Reminder complex numbers

» The polar form : Z = rcosf + irsinf = re'?

= The relation e® = cos8 + isin@ is called the Euler relation

= Link with the algebraic form:

X

r=+x2+y? and tand =2 cosO = \ﬁ and sinf = Npzrew

= Remember that e'? is periodic ! So:

eiG — ei(0+2prc),p =/

= |e?®| =1 =x2 + y2, with

x = cosf and y= sinf

So the x coordinate are the cosine of the angle;
The y coordinates are the sine of the angle.

Example: cos (g) = %: sin (g) = ?

35



Plane wave equation
P, t) = Aei® = Aeitkr-0t+90) = 4oikT-0g(r,t) = Acos(k - T — wt + y)

r is the position vector (x,y,z)

t is the time

® the (total) phase

A is the amplitude of the wave (in electromagnetism often noted as E,, the electric field amplitude)

A’is the complex amplitude 4’ = '
which includes the phase shift ¢,

) 27 .
k is the wave vector k = - n

A is the wave length, 7 a unit vector pointing in the direction of propagation

w is the angular frequency, with w = 2nf



Laue’s condition

« scattering of an electromagnetic plane wave

-

E = E ei(kr-8) where k is the wave vector on a crystal, |k|=271/A, w= 27/T
 consider simplified crystal where motif = 1 atom, located at lattice points

« each atom acts like an independent source that scatters the incoming light in
different directions

look at any 2 points on the lattice, not
two planes  k,-R

VR
g Ao

« diffraction peaks will be observed in directions that the rays scattered from all

lattice points interfere constructively
MSE-238
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=P~
[Laue’s condition

two (random) lattice points on the crystal lattice
any lattice vector R =r,a + r,b + r,e

/_7 Yy=y,+v¢,
Vs B(r, 1) = AeilkT-wt+d))

Yo

W
o
4

k, R

Yo h

K there is constructive interference if the phase of 1 ; and
* Y , are the same, or an integer of 27t

k-R—wt=ky-R— wt+2nN
(k — koy - R = 21N

MSE-238 38
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Reciprocal lattice

c* is perpendicular to both a and b, which means their dot
products are zero

c*~a=0andc**-b=0

c* e c=cc*cosg

with |¢*| = 2m/dyp; and from drawing: c cos ¢ =d,,,

c* ¢ =2ndyg; /dpg; = 2T

does we have:

—

a at. @ =2n b*. @ =0 . @ =0
Plan of a monoclinic unit cell @r. b =1 b*. b =2n c*. b =0
perpendicular to the y-axis a. T =0 b T =0 . T =9

We have a new basis new basis (O, a*, b*, ¢*) in which a vector N*,;53 = ha* + kb* + lc*
is perpendicular to the plane (hkl)

If we consider any vector in the direct space R = r,a + r,b + r,c and one in the
reciprocal space N* = n,a* + n,b* + n,c* we have:
R-N"=nrmnja-a* +nrnn,b-b* +rynzc-c* =2n(rngy +rn, +ryns)

an integer



=PrL
[Laue’s condition

two (random) lattice points on the crystal Bravais lattice
any lattice vector R =r,a + r,b + r,e

/_7 Y=9¢,+v¢,
Y, (ko
l/)(r,t) =Alel(kr wt)

Yo

there is constructive interference if the phase of 1 ; and
Y , are the same, or an integer of 27

R € D the (direct) Bravais lattice
k-R—wt=ko R—wt+2nN N* € R the reciprocal lattice

(k— ko) - R = 21N .. .
- Laue’s condition: for constructive interference,

the difference between incident wave vector k, and
scattered wave vector k must be a reciprocal lattice

vector N*

this is fullfilled if
k — ko = N*

MSE-238 40
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Laue’s condition and Bragg’s law

k — ko = N* O
ko =k — N* N7 o
IKoll?= llKlI?-2 [| Il IN* || cos g+ [IN* ||

\v

N

coS (E — 0) = sin @

2
wave only changes direction, thus ||ky|| = ||kl = 27”
and using ||[Nx|| =27”

2> A= Zdhkl sin @

MSE-238 41
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Laue’s condition and Bragg’s law

Bragg Laue
A=2dsin® Q= N*
w E/ (0,1) (1,1)
L I
2n/d
. v
(0,0) (1,0)
Real Reciprocal

MSE-238 42
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Reciprocal space lattice - diffraction pattern

The reciprocal lattice represents the
framework and components of the diffraction

pattern
° o
o ) ° .
° o ° o
c* b* ° ) o
o ° .
> ° . o
(4]
The reciprocal lattice is the
eg.a<b<c a* > b* > c* Fourier transform of the
: direct lattice!
Real space Reciprocal space

The spacings between peaks in reciprocal lattice
(a*, b*, ¢*) are inversely proportional to the
corresponding dimensions in real space (a, b, ¢)
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Fourier series in one dimension

flx) = Ao+ Z Ay, (cos(0y,) cos(2mnz/a) + sin(f,) sin(2mnz/a))

1.5
Lo

flz) 05 | ’ | | | l | l | | | I
oo
05
0 5 10 15 20 25 30 35 40

the resulting curve depend on the amplitude A

T

and the phase between the waves

1.5

1.0
fﬁm} 0.5 nm:|‘l—V|
Y oo -
05
0 5 10 15 20 25 30 35 40
15
1.0
f?} 0.5 nm=|3—v|
Y00 I
05
0 5 10 15 20 25 30 15 40
T
15
1.0
f‘(:} 0.5 nm=|5—V|
Y oo —
05
5 10 15 20 25 30 35 40
4
15
10
flz) 05 a——
e Mmax = |50 v |
oo -
05
5 10 15 20 25 30 35 40
T

can also be expressed in exponential form
o0

_ iG,2 _ & 5n
f(z) —n;mf(}ne ) fa, 5 ) 5
Gn =2mn/a

https://lampz.tugraz.at/~hadley/ss1/skriptum/outline.php!/S£-238 44



Fourier series and Fourier transform

Fourier series: for periodic functions, discrete sum of harmonics

f(#) = Z ff; exp (zé ) F) sum over the reciprocal lattice vectors G
Ve fc complex coefficients (called structure factors)

Fourier transform extends also to non periodic functions, integral
Fourier transform of one-dimensional function f(x) is
F(k) = [77 f(x)et* dx



Diffraction and Fourier transform

Y(system) « [FT (system)]
Y(crystal) < [FT (crystal)]

The reciprocal lattice is the Fourier transform of the direct lattice

—> what is missing for a crystal?
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Bravais lattice

& Basis

Crystal

by Phil Willmott



=PrL
Diffraction

« Bragg’s law: simple geometric consideration if a constructive interference CAN
occur

 Crystal is not just the lattice (and lattice planes) but also consists of a motif!

* it is the lattice which determines the geometry of the pattern and the motif
which determines the intensities of the X-ray diffracted beams.

The diffraction pattern is the is the square of the Fourier transform of that
system

MSE-238 48



Diffraction and Fourier transform

scattering amplitude from a crystalline material

all atoms all atoms
Fcrystal(q) — Z fl(q)eiq-rl — Z fl(q)eiq.(Rn+rj) = Z elq-Rn + z fl(q)elq-r]
l T Rn+rj \ n ) \ J )
atomic form factor of the r =R, +7;

atom situated at position r; R lattice vector Y Y
n

r, position vector of the lattice unit cell structure factor
atoms in the unit cell — see next week
(= the motif)

- see next week
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Reciprocal lattice and Fourier transform

by Phil Willmott

a diffraction pattern is the Fourier Transform
of the object that produces it

» Each point in the reciprocal lattice is
therefore a “Fourier component” of the
diffraction pattern

» The position of each point in the RL
defines the frequency and direction of a
sinusoidal wave of electron density



cPrL
Reciprocal lattice and Fourier transform

by Phil Willmott



cPrL
Reciprocal lattice and Fourier transform

—

diffraction peak (reciprocal space vector) in the same direction from the diffraction
peak centre but twice the distance or length-> corresponding electron wave has
double the frequency



cPrL

Reciprocal lattice and Fourier transform

by Phil Willmott

a diffraction pattern is the Fourier Transform
of the object that produces it

» Each point in the reciprocal lattice is
therefore a “Fourier component” of the
diffraction pattern

» The position of each point in the RL
defines the frequency and direction of a
sinusoidal wave of electron density

« The intensity at each point
defines the amplitude of the wave



cPrL

Reciprocal lattice and Fourier transform

by Phil Willmott

a diffraction pattern is the Fourier Transform
of the object that produces it

» Each point in the reciprocal lattice is
therefore a “Fourier component” of the
diffraction pattern

» The position of each point in the RL
defines the frequency and direction of a
sinusoidal wave of electron density

» The intensity at each point defines the
amplitude of the wave

» The phase ¢ of that wave is fixed for
that wave relative to all the other waves
but cannot be measured directly

Lieo(system) o< [FT (system)]”



cPrL
Reciprocal lattice and Fourier transform

by Phil Willmott



cPi-L
Electromagnetic wave and measured intensity

1/)(1‘, t) — Aei(k-r—a)t+¢)

what we can measure is the intensity I

I o« [p(r,)?
Y (r, t)]|? = |Ae"(‘!“”"_“)”"5)|2 with |[e??| =1 = {/x2 + y2
[Y(r,0)|? = |A]?

I o |A]?> = measured intensity only depends on amplitude, not the phase

we know the direction of the wave and its amplitude over the measured
intensity

we cannot just take the Fourier transform to get back to the direct lattice &
motif since we don’t know the phase

—>generally know as “the phase problem”



Full information content of reciprocal lattice

... take the information provided by each diffraction point in the
reciprocal lattice

The direction (angle) of the wave relative to the origin of the RL

The frequency (given by the distance from origin of the RL,
proportional to 1/1)

The amplitude of the wave, given by the square root of the intensity

= if one can work out the phase ¢ associated with each of these points
(techniques exist, but not covered in this course)

= ...draw the corresponding wave y(A,X,$) in real space and add them
all together



Example: the scattering of collagen
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Figure 1

Schematic of the staggered repetition unit of the triple-helix collagen
structure. The fiber axis is along the arrow indicating dense ody-wide
regions with five nanofibrils overlapping alternately with less dense
(1 — o)dy-wide regions of one gap and four nanofibrils overlapping.

De Caro, L., Terzi, A., Fusaro, L., Altamura, D., Boccafoschi, F.,
Bunk, O. & Giannini, C. (2021). IUCrJ 8, 1024—1034.
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MSE-238

Linear densities of lysine/hydroxylysine and arginine amino acids as a
function of the fractional dy-period coordinate along the collagen fibril
versus the electron density obtained by the Fourier difference phasing.
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