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General Outline 

• introduction and reminder of atomic bonds, crystals – week 1

Part I: crystallography - weeks 2-6

• packing of spheres, constructing crystal structure

• crystal lattice and symmetry operations

• mathematical description of the lattice, Miller indices

• reciprocal space

Part II: characterization – week 6-8

• diffraction

• scattering

BREAK 18.4. & 25.4.

Part III: amorphous & hierarchical structures – week 9-12

• glasses

• polymers

• biological and hybrid materials

Recap – week 13
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General Outline (adapted)

• introduction and reminder of atomic bonds, crystals – week 1

Part I: crystallography - weeks 2-6

• packing of spheres, constructing crystal structure week 2

• crystal lattice and symmetry operations week 3

• mathematical description of the lattice, Miller indices week 4

• reciprocal space (&diffraction) week 6

• characterization I: diffraction week 7

• diffraction & recap of crystallography week 8

BREAK 18.4. & 25.4.

Part III: amorphous & hierarchical structures – week 9-12

• glasses

• polymers

• Characterization II: scattering

• biological and hybrid materials

Recap – week 13
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Overview today 

• Diffraction on planes of crystals

• Reciprocal lattice

• d-spacing of planes

• Young’s double slit experiment and Bragg’s law

• Laue’s condition: connection between diffraction and reciprocal lattice

• Diffraction as Fourier Transform of the crystal (=lattice & motif)

• Hammond Chapter 6-8

• Jens Als-Nielsen & Des McMorrow “Elements of Modern X-ray Physics” 
Chapter 5
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https://lampz.tugraz.at/~hadley/ss1/skriptum/outline.php for some nice visualization and interactive 
plots!

https://lampz.tugraz.at/~hadley/ss1/skriptum/outline.php


Diffraction pattern of Al (FCC crystal)

An X-ray diffraction pattern reflects the lattice and symmetry of the crystalline material. 

The diffraction peaks are indexed, these indices tell you which crystal planes are reflecting 
the X-rays

X-ray diffraction: crystal planes



Depending on how the sample is oriented 
relative to the incoming beam, the diffraction 
pattern will be different and allow to recognize 
the symmetry of the crystal

Images of same sample
with incident electron beam 
parallel to other crystallographic
directions

Electron diffraction: crystal planes

beam falls in parallel to 
the  [110] zone axis. 

Au alloy



Reciprocal lattice and diffraction

• the electron diffraction patterns or the X-ray diffraction patterns are simply 
sections through the reciprocal lattice of a crystal—the pattern of spots on the 
screen or area detector and the pattern of reciprocal lattice points in the 
corresponding plane or section through the crystal are identical.

• which section of the 3D reciprocal lattice is probed is defined by the Ewald 
sphere (as will be discussed in coming weeks)
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Reciprocal lattice vectors
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two families of planes with d-
spacing d1 and d2

normals to the family of 
planes from common 
origin O

reciprocal (lattice) vectors

longer vector for smaller 
d-spacing

||d1*|| = C/d1

||d2*|| = C/d2

length inversely 
proportional to lattice 
spacing d

direction normal to 
plane

C = 2π



Reciprocal lattice
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third  family of planes, the reciprocal  vectors start to form a grid or lattice

scale in reciprocal space 

is 1/length

Å−1, or nm



The five plane lattices and their corresponding 
reciprocal lattice
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oblique P rectangular P hexagonal P rectangular C square P

unit cell specified by lattice vectors a and b 

unit cell specified by reciprocal lattice vectors a* and b* 



Reciprocal lattice
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Plan of a monoclinic P unit cell 
perpendicular to the y-axis planes (h0k)

Note that a* and c* are not parallel to a and c, 

respectively, because the normals to the

(100) and (001) planes in the monoclinic lattice are 

not parallel to a and c, respectively.

||a*|| = 2π/d100

||c*|| = 2π/d001



Reciprocal lattice
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The reciprocal lattice unit cell of a 
monoclinic P crystal defined by 
reciprocal lattice vectors a*, b* and c*

for the (102) planes:

for the (hkl) planes:

plane indices are components of the 
d*hkl vector

direct lattice vector: directions are its 
components



Reciprocal lattice
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Plan of a monoclinic unit cell 
perpendicular to the y-axis

c* is perpendicular to both a and  b, which means their dot 
products are zero
c*・a = 0 and c*・b = 0 
c*・c = cc* cos 𝜙
with ||c*|| = Τ2𝜋 𝑑001 and from drawing: c cos 𝜙 =d001

c*・c  = Τ2𝜋𝑑001 𝑑001 = 2𝜋

does we have:

an integer

We have a new basis new basis (O, a*, b*, c*) in which  a vector N*hkl = ha* + kb* + lc* 
is perpendicular to the plane (hkl) 

If we consider any vector in the direct space R = r1a + r2b + r3c and one in the                               

reciprocal space N* = n1a* + n2b* + n3c*, we have: 

𝑹 ⋅ 𝑵∗ = 𝑟1𝑛1𝒂 ⋅ 𝒂∗ + 𝑟2𝑛2𝒃 ⋅ 𝒃∗ + 𝑟3𝑛3𝒄 ⋅ 𝒄∗ = 2𝜋(𝑟1𝑛1  + 𝑟2𝑛2 + 𝑟3𝑛3)



Reciprocal lattice – Notations…

• A note on Notations:

• the reciprocal space vector (which points from one reciprocal lattice point to 
some other reciprocal lattice point) is called 

• d*hkl

• N*

or in particular when we talk about diffraction often

• G or K

also 

a*・a = b*・b = c*・c  = C, C a constant

Often C is often noted as 2𝜋 (and we will see soon why it is very convenient to do 
so)  in some text books  (including Hammond) C= 1
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Find the reciprocal space vectors from direct 
lattice vectors

16

x x x

x x x

find a* which is orthogonal to b and c 
and fullfills a・a* = 2π

Reminder Volume:

with a* = (𝒃 × 𝒄)
2π
𝑉

  

→ cross product!

a・a* = a・(𝒃 × 𝒄)
2π
𝑉

so we can find the reciprocal space vectors by:

= 2π



For cubic structure
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V= a3

a* = 
2π
𝑉

(𝒃 × 𝒄)

a* = 
2π
a3 

0
𝑎
0

×
0
0
𝑎

= 
2π
a3

a2

0
0

 = 
2π
a 𝐱 = 

2π
a2 𝐚

primitive cubic:

b = ay c = az

→ another cubic
→ a*,b*,c* are parallel to a,b,c

face-centred cubic reciprocal lattice 
(cubic F) for the body-centred cubic 
(direct) lattic (cubic I)

reciprocal lattice of the face-
centred cubic lattice is
body-centred

a = ax

b* = = 
2π
a 𝐲and

c* = = 
2π
a 𝐳



Example

MSE-238 18

NaCl 



Distances between (hkl) planes

19

The reciprocal space formalism facilitates the derivation of the interplane distance of 

parallel (hkl) planes. 
𝑶𝑨 =

1

ℎ
𝒂 𝑶𝑩 =

1

𝑘
𝒃 𝑶𝑪 =

1

𝑙
𝒄

• Calculate the reciprocal lattice vectors 𝒂∗, 𝒃∗, 𝒄∗ and  the vector 𝑵(𝒉𝒌𝒍)
∗

• Find the norm of 𝑵(𝒉𝒌𝒍)
∗ -→ find the distance. 

as we have seen before, for any vector (e.g. OA) in real space it holds
𝑶𝑨 ⋅ 𝑵(𝒉𝒌𝒍)

∗ = 𝑶𝑩 ⋅ 𝑵(𝒉𝒌𝒍)
∗ = 𝑶𝑪 ⋅ 𝑵(𝒉𝒌𝒍)

∗ = 2π

𝑑(ℎ𝑘𝑙) =
2𝜋

𝑵(𝒉𝒌𝒍)
∗

distance d(hkl) is the projection of OA (or OB or OC) onto the 
normal of the plane → the scalar product

now we have the reciprocal lattice vector N*(hkl) which is 

perpendicular to the (hkl) plane

does we can now calculate the distance by projection of OA onto 

the unit vector along N*(hkl) 

𝑑ℎ𝑘𝑙

β

γ

N* = ha* + kb* + lc*

𝑑(ℎ𝑘𝑙) = 𝑶𝑨 ⋅
𝑵(𝒉𝒌𝒍)

∗

𝑵(𝒉𝒌𝒍)
∗



Distance between (hkl) planes: cubic system
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||N*(hkl)|| = (ha∗ + kb∗ + lc∗)・(ha∗ + kb∗ + lc∗)

for crystals with orthogonal axis, for example cubic
also reciprocal basis is orthogonal a* ・ b* =0 etc.

||N*(hkl)|| = ha∗・ha∗+ kb∗・kb∗+ lc∗・lc∗)

b* =  
2π
a 𝐲a* =  

2π
a 𝐱 c* =  

2π
a 𝐳

orthonormal basis → norm of vector as square root of components

||N*|| =
2π
a ℎ

2 2π
a 𝑘

2
+

2π
a 𝑙

2
= 2𝜋

ℎ2+𝑘2+𝑙2

𝑎
𝑑ℎ𝑘𝑙 =

𝑎

ℎ2+𝑘2+𝑙2

𝑑(ℎ𝑘𝑙) =
2𝜋

𝑵(𝒉𝒌𝒍)
∗

as we have seen before for cubic 



▪ The plane parallel to the plane (ABC) and passing through the 

origin O is a crystal plane belonging to the family of planes 

ℎ𝑘𝑙 . 

▪ Assuming that the distance between two (hkl) planes is the same 

for all consecutive planes, this distance is given by ON, which is 

the projection of the vector OA on the normal to the plane 

▪  𝑂𝑁 = 𝑑(ℎ𝑘𝑙) = 𝑶𝑨 ∙ 𝒏𝒉𝒌𝒍

Reminder distance in direct lattice

21

𝑑ℎ𝑘𝑙

β

γ

𝑑(ℎ𝑘𝑙) =
𝑎

ℎ2 +𝑘2 +𝑙2

→ for cubic both works, for non-orthogonal lattice it is much easier in the reciprocal space



Distance between (hkl) planes
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watch out, a*, b* and c* are not orthogonal to each other for many of the 
crystal lattices!
but the reciprocal space lattice helps to get back some orthogonality since we 
defined a* to be orthogonal to a and b etc.

→ exercise to calculate for hexagonal lattice

||N*(hkl)|| = (ha∗ + kb∗ + lc∗)・(ha∗ + kb∗ + lc∗)

𝑑(ℎ𝑘𝑙) =
2𝜋

𝑵(𝒉𝒌𝒍)
∗



Distances betweek (hkl) planes
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dhkl = 
a0

 h2 + k2 + l2

dhkl = 
1

 
è
ç
ç
æ

ø
÷
÷
öh2

a2 + 
l2

c2 - 
2 hl
a c  cosb  

1
sin2b + 

k2

b2

dhkl = 
1

h2

a2 + 
k2

b2 + 
l2

c2

dhkl = 
1

h2 + k2

a2  + 
l2

c2

dhkl = 
1

4
3 a2 (h2 + k2 + hk) + 

l2

c2

– Monoclinic:

– Orthorhombic:

–Tetragonal:

– Hexagonal:

– Cubic:
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Young’s double slit experiment

by Phil Willmott

to get such an  interference pattern we need a wavelength that is of the order of the 
distance between the slits. 



S1

S2

P

2

2

d

Young’s double slit experiment

▪  

▪  Constructive interference: 

▪  If             ,      is small 

▪ ⇒ 

▪  

by Phil Willmott



Young’s double slit experiment

distance between two scattering centers or slits increases 
the angle between maxima become narrowerby Phil Willmott



Crystal instead of double slit

by Phil Willmott



Which radiation?
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Energy wavelength

Neutrons 1 – 5 meV (cold)

25 – 50 meV (thermal)

9 - 4  A

1.8 – 1.3 A

Xrays 100keV

40 keV

5 keV

0.12 A ( hard Xrays)

0.31 A

2.48 A  (soft Xrays)

Electrons 200 keV 0.025 A

visible light will not be a good probe since the wavelength is 400nm-700nm, 
which is much bigger than the distance between the atoms, typically of the 
order of a few 10−10m. For instance, 
- the lattice parameter of the element Ni is 3.6 10−10m,  
- the size of an atom is about 1.4   10−10m. 



2



Again,                                  or 

d

Bragg’s law

by Phil Willmott



d

Bragg’s law

by Phil Willmott



Bragg’s law
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higher orders m (or n):

what happened to m?

it usually is incorporated into (hkl)

𝑚𝜆 = 2𝑑ℎ𝑘𝑙 sin 𝜃

𝜆 = 2
𝑑ℎ𝑘𝑙

𝑛
sin 𝜃 = 2𝑑𝑛ℎ 𝑛𝑘 𝑛𝑙 sin 𝜃

for example third order reflection of the 
plane (111) is represented as a first order 
of the plane (333)



Bragg’s law
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𝜃 𝜃

1 2

𝜃𝜃

d

only atoms on different planes can scatter out of phase! So we can 
consider entire planes as scatterers.
geometrical view, simple expression

what if we look at a crystal as a three-dimensional lattice with atoms 
located in a certain motif? We can look at the lattice as a 3D diffraction 
grating → view of Max von Laue (1912)

∆𝐿 = 𝑑2 − 𝑑1 = 0

𝑑2 = 𝑑𝑐𝑜𝑠(𝜃)

𝑑1 = 𝑑𝑐𝑜𝑠(𝜃)



Reminder complex numbers
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Reminder complex numbers
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Reminder complex numbers
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▪ The polar form :                              z = 𝑟𝑐𝑜𝑠𝜃 + 𝑖𝑟𝑠𝑖𝑛𝜃 = 𝑟𝑒𝑖𝜃 

▪ The relation 𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 is called the Euler relation

▪ Link with the algebraic form: 

𝑟 = 𝑥2 + 𝑦2  and tan𝜃 =
𝑦

𝑥
𝑐𝑜𝑠𝜃 =

𝑥

𝑥2+𝑦2
 and sin𝜃 =

𝑦

𝑥2+𝑦2

▪ Remember that 𝑒𝑖𝜃 is periodic ! So:

𝑒𝑖𝜃 = 𝑒𝑖(𝜃+2𝑝𝜋), 𝑝 ∈ ℤ

▪ 𝑒𝑖𝜃 = 1 = 𝑥2 + 𝑦2, with 

𝑥 = 𝑐𝑜𝑠𝜃 and y= 𝑠𝑖𝑛𝜃 

So the x coordinate are the cosine of the angle;

The y coordinates are the sine of the angle. 

Example: cos
𝜋

3
=

1

2
; sin

𝜋

3
=

3

2



Plane wave equation
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𝜓 𝒓, 𝑡 = 𝐴𝑒𝑖Φ = 𝐴𝑒𝑖(𝒌⋅𝒓−𝜔𝑡+𝜙0) = 𝐴′𝑒𝑖(𝒌⋅𝒓−𝜔𝑡)

r is the position vector (x,y,z)
t is the time

Φ the (total) phase
A is the amplitude of the wave (in electromagnetism often noted as E0, the electric field amplitude)

A’ is the complex amplitude 𝐴′ = 𝑒𝑖𝜙

which includes the phase shift 𝜙0

k is the wave vector 𝒌 =
2𝜋

𝜆
ො𝑛

𝜆 is the wave length, ො𝑛 a unit vector pointing in the direction of propagation

𝜔 is the angular frequency, with 𝜔 = 2π𝑓

𝜓 𝒓, 𝑡 = 𝐴 cos 𝒌 ⋅ 𝒓 − 𝜔𝑡 + 𝜙0



Laue’s condition

• scattering of an electromagnetic plane wave 

𝐸 = 𝐸0𝑒𝑖(𝒌.𝒓−𝜔𝑡) where k is the wave vector on a crystal, |k|=2π/λ, 𝜔= 2π/T

• consider simplified crystal where motif = 1 atom, located at lattice points

• each atom acts like an independent source that scatters the incoming light in 
different directions
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• diffraction peaks will be observed in directions that the rays scattered from all 
lattice points interfere constructively

R

k0

k0 k

.
.

k0∙R

k∙R

look at any 2 points on the lattice, not 
two planes



Laue’s condition
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R

k0

k0 k

.
.

k0∙R

k∙R

𝜓 0

𝜓 2

𝜓 1

𝜓 = 𝜓 1 + 𝜓 2

there is constructive interference if the phase of 𝜓 1 and 
𝜓 2 are  the same, or an integer of 2π

𝜓 𝒓, 𝑡 = 𝐴𝑒𝑖(𝒌⋅𝒓−𝜔𝑡+𝜙0)

𝒌 ⋅ 𝑹 − 𝜔𝑡 = 𝒌𝟎 ⋅ 𝑹 − 𝜔𝑡 + 2𝜋𝑁
(𝒌 − 𝒌𝟎) ⋅ 𝑹 = 2𝜋𝑁

two (random) lattice points on the crystal lattice
any lattice vector R = r1a + r2b + r3c 



Reciprocal lattice
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Plan of a monoclinic unit cell 
perpendicular to the y-axis

c* is perpendicular to both a and  b, which means their dot 
products are zero
c*・a = 0 and c*・b = 0 
c*・c = cc* cos 𝜙
with |c*| = Τ2𝜋 𝑑001 and from drawing: c cos 𝜙 =d001

c*・c  = Τ2𝜋𝑑001 𝑑001 = 2𝜋

does we have:

We have a new basis new basis (O, a*, b*, c*) in which  a vector N*hkl = ha* + kb* + lc* 
is perpendicular to the plane (hkl) 

If we consider any vector in the direct space R = r1a + r2b + r3c and one in the                               

reciprocal space N* = n1a* + n2b* + n3c*, we have: 

𝑹 ⋅ 𝑵∗ = 𝑟1𝑛1𝒂 ⋅ 𝒂∗ + 𝑟2𝑛2𝒃 ⋅ 𝒃∗ + 𝑟3𝑛3𝒄 ⋅ 𝒄∗ = 2𝜋(𝑟1𝑛1  + 𝑟2𝑛2 + 𝑟3𝑛3)

an integer



Laue’s condition
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R

k0

k0 k

..

k0∙R

k∙R

𝜓 0

𝜓 2

𝜓 1

𝜓 = 𝜓 1 + 𝜓 2

there is constructive interference if the phase of 𝜓 1 and 
𝜓 2 are  the same, or an integer of 2π

𝜓 𝒓, 𝑡 = 𝐴′𝑒𝑖(𝒌⋅𝒓−𝜔𝑡)

𝒌 ⋅ 𝑹 − 𝜔𝑡 = 𝒌𝟎 ⋅ 𝑹 − 𝜔𝑡 + 2𝜋𝑁
(𝒌 − 𝒌𝟎) ⋅ 𝑹 = 2𝜋𝑁

this is fullfilled if
𝒌 − 𝒌𝟎 = N*

two (random) lattice points on the crystal Bravais lattice
any lattice vector R = r1a + r2b + r3c 

→ Laue’s condition: for constructive interference, 
the difference between incident wave vector k0 and 
scattered wave vector k must be a reciprocal lattice 
vector N*

𝑹 ∈ 𝒟 the (direct) Bravais lattice
N* ∈ ℛ the reciprocal lattice



Laue’s condition and Bragg’s law

𝒌 − 𝒌𝟎 = N*

𝒌𝟎 = 𝒌 − N*

𝒌0
2= 𝒌 2-2 𝒌 N∗ cos 𝜑+ N∗ 2

wave only changes direction, thus 𝒌0 = 𝒌 =
2𝜋

𝜆

and using N∗ =
2𝜋

𝑑

→ 𝜆 = 2𝑑ℎ𝑘𝑙 sin 𝜃
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N*

k0 k

𝜃 𝜑

cos
𝜋

2
− 𝜃 = sin 𝜃



Laue’s condition and Bragg’s law
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N*



a

c

b a*

c* b*

Real space Reciprocal space

e.g. a < b < c a* > b* > c*

The spacings between peaks in reciprocal lattice 
(a*, b*, c*) are inversely proportional to the 

corresponding dimensions in real space (a, b, c) 

The reciprocal lattice represents the 
framework and components of the diffraction 
pattern 

Reciprocal space lattice → diffraction pattern

The reciprocal lattice is the 
Fourier transform of the 
direct lattice!



Fourier series in one dimension
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the resulting curve depend on the amplitude A 
and the phase between the waves

can also be expressed in exponential form



Fourier series and Fourier transform
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Fourier transform of one-dimensional function 𝑓(𝑥) is

𝐹 𝑘 = ∞−׬

+∞
𝑓(𝑥)𝑒𝑖𝑘𝑥 𝑑𝑥 

sum over the reciprocal lattice vectors G

fG complex coefficients (called structure factors)

Fourier series: for periodic functions, discrete sum of harmonics

Fourier transform extends also to non periodic functions, integral 



Diffraction and Fourier transform

𝜓 𝑠𝑦𝑠𝑡𝑒𝑚 ∝ ℱ𝒯(𝑠𝑦𝑠𝑡𝑒𝑚)

𝜓 𝑐𝑟𝑦𝑠𝑡𝑎𝑙 ∝ ℱ𝒯(𝑐𝑟𝑦𝑠𝑡𝑎𝑙)

The reciprocal lattice is the Fourier transform of the direct lattice

→ what is missing for a crystal? 



Bravais lattice 

⊗ Basis 

= Crystal 

by Phil Willmott



Diffraction

• Bragg’s law: simple geometric consideration if a constructive interference CAN 
occur

• Crystal is not just the lattice (and lattice planes) but also consists of a motif!

• it is the lattice which determines the geometry of the pattern and the motif 
which determines the intensities of the X-ray diffracted beams.

• The diffraction pattern is the is the square of the Fourier transform of that 
system
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a*

c* b*



Diffraction and Fourier transform

scattering amplitude from a crystalline material

𝐹𝑐𝑟𝑦𝑠𝑡𝑎𝑙 𝒒 = ෍

𝑙

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑓𝑙 𝒒 𝑒𝑖𝒒∙𝒓𝑙

atomic form factor of the 
atom situated at position rl

→ see next week

rl = Rn+rj

Rn lattice vector
rj position vector of the 
atoms in the unit cell 
(= the motif)

lattice unit cell structure factor
→ see next week

= ෍

𝑹𝑛+𝒓𝑗

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑓𝑙 𝒒 𝑒𝑖𝒒∙(𝑹𝑛+𝒓𝑗) = ෍

𝑛

𝑒𝑖𝒒∙𝑹𝑛 + ෍

𝑗

𝑓𝑙 𝒒 𝑒𝑖𝒒∙𝒓𝑗



Reciprocal lattice and Fourier transform

a diffraction pattern is the Fourier Transform 
of the object that produces it 

• Each point in the reciprocal lattice is 
therefore a “Fourier component” of the 
diffraction pattern 

• The position of each point in the RL 
defines the frequency and direction of a 
sinusoidal wave of electron density 
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Reciprocal lattice and Fourier transform

diffraction peak (reciprocal space vector) in the same direction from the diffraction 
peak centre but twice the distance or length→ corresponding electron wave has 
double the frequency



Reciprocal lattice and Fourier transform

a diffraction pattern is the Fourier Transform 
of the object that produces it 

• Each point in the reciprocal lattice is 
therefore a “Fourier component” of the 
diffraction pattern 

• The position of each point in the RL 
defines the frequency and direction of a 
sinusoidal wave of electron density 

• The intensity at each point 
defines the amplitude of the wave 

by Phil Willmott



Reciprocal lattice and Fourier transform

a diffraction pattern is the Fourier Transform 
of the object that produces it 

• Each point in the reciprocal lattice is 
therefore a “Fourier component” of the 
diffraction pattern 

• The position of each point in the RL 
defines the frequency and direction of a 
sinusoidal wave of electron density 

• The intensity at each point defines the 
amplitude of the wave 

• The phase  of that wave is fixed for 
that wave relative to all the other waves 
but cannot be measured directly 

by Phil Willmott



Reciprocal lattice and Fourier transform
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Electromagnetic wave and measured intensity

MSE-238 56

𝜓 𝒓, 𝑡 = 𝐴𝑒𝑖(𝒌⋅𝒓−𝜔𝑡+𝜙)

what we can measure is the intensity I

𝐼 ∝ 𝜓 𝒓, 𝑡 2

𝜓 𝒓, 𝑡 2 = 𝐴𝑒𝑖(𝒌⋅𝒓−𝜔𝑡+𝜙) 2
 with 𝑒𝑖𝜃 = 1 = 𝑥2 + 𝑦2

𝜓 𝒓, 𝑡 2 = 𝐴 2

𝐼 ∝ 𝐴 2 → measured intensity only depends on amplitude, not the phase

we know the direction of the wave and its amplitude over the measured 
intensity
we cannot just take the Fourier transform to get back to the direct lattice & 
motif since we don’t know the phase
→generally know as “the phase problem”



Full information content of reciprocal lattice

… take the information provided by each diffraction point in the 
reciprocal lattice

• The direction (angle) of the wave relative to the origin of the RL

• The frequency (given by the distance from origin of the RL, 
proportional to 1/l) 

• The amplitude of the wave, given by the square root of the intensity

▪ if one can work out the phase  associated with each of these points 
(techniques exist, but not covered in this course)

▪  … draw the corresponding wave 𝜓(A,,) in real space  and add them 
all together



Example: the scattering of collagen

MSE-238 58
De Caro, L., Terzi, A., Fusaro, L., Altamura, D., Boccafoschi, F., 

Bunk, O. & Giannini, C. (2021). IUCrJ 8, 1024–1034.



a [Å]

b [Å]

Cl

F

CC

C

C

C

C

Electron density profile of each unit cell

by Phil Willmott



Electron density profile of each unit cell
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Summary
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